Extensions 1→N→G→Q→1 with N=C32:5SD16 and Q=C2

Direct product G=NxQ with N=C32:5SD16 and Q=C2
dρLabelID
C2xC32:5SD1648C2xC3^2:5SD16288,480

Semidirect products G=N:Q with N=C32:5SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
C32:5SD16:1C2 = C24:1D6φ: C2/C1C2 ⊆ Out C32:5SD16484+C3^2:5SD16:1C2288,442
C32:5SD16:2C2 = Dic12:S3φ: C2/C1C2 ⊆ Out C32:5SD16484C3^2:5SD16:2C2288,449
C32:5SD16:3C2 = D12:18D6φ: C2/C1C2 ⊆ Out C32:5SD16244+C3^2:5SD16:3C2288,473
C32:5SD16:4C2 = Dic6.29D6φ: C2/C1C2 ⊆ Out C32:5SD16484C3^2:5SD16:4C2288,481
C32:5SD16:5C2 = S3xC24:C2φ: C2/C1C2 ⊆ Out C32:5SD16484C3^2:5SD16:5C2288,440
C32:5SD16:6C2 = D6.3D12φ: C2/C1C2 ⊆ Out C32:5SD16484+C3^2:5SD16:6C2288,456
C32:5SD16:7C2 = Dic6:3D6φ: C2/C1C2 ⊆ Out C32:5SD16488+C3^2:5SD16:7C2288,573
C32:5SD16:8C2 = D12:5D6φ: C2/C1C2 ⊆ Out C32:5SD16248+C3^2:5SD16:8C2288,585
C32:5SD16:9C2 = Dic6.10D6φ: C2/C1C2 ⊆ Out C32:5SD16488+C3^2:5SD16:9C2288,593
C32:5SD16:10C2 = Dic6.22D6φ: C2/C1C2 ⊆ Out C32:5SD16488+C3^2:5SD16:10C2288,596
C32:5SD16:11C2 = Dic6:D6φ: C2/C1C2 ⊆ Out C32:5SD16248+C3^2:5SD16:11C2288,578
C32:5SD16:12C2 = Dic6.20D6φ: C2/C1C2 ⊆ Out C32:5SD16488+C3^2:5SD16:12C2288,583
C32:5SD16:13C2 = S3xQ8:2S3φ: C2/C1C2 ⊆ Out C32:5SD16488+C3^2:5SD16:13C2288,586
C32:5SD16:14C2 = D12.14D6φ: C2/C1C2 ⊆ Out C32:5SD16488+C3^2:5SD16:14C2288,598
C32:5SD16:15C2 = D12.27D6φ: trivial image484C3^2:5SD16:15C2288,477


׿
x
:
Z
F
o
wr
Q
<